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SECTION 1
INTRODUCTION

Recently there has been a renewed interest in transmission-line
theory and its application to the internal interaction problems
involving electromagnetic pulse (EMP) excitation of aerospace systems.
One new development in this area has been the formulation of an
analysis procedure to study large interconnected networks of multi-
conductor transmission lines. This analysis, which is described in
refs. (1) and (2), and the resulting computer program (ref. 3), will
permit not only simple branching of transmission lines within the
network, but also complicated loopir- of lines. Thus, an arbitrarily
interconnected set of transmission .rnes can be analyzed using this
approach.

The analysis of the transmission-line networks described in
refs. (1) and (2) fs based on the retwork excitation being due to
lumped (or discrete) voltage and current sources located at a source
position somewhere along each transmission-line section (tube). While
this specification of sources may be useful for certain applications,
it is not particularly useful for EMP studies, where the transmission-
line network is excited by an .ncident, transient electromagnetic
field. In the EMP case, not only is the transmission-line excitation
distributed along the line, but the fundamental excitation quantities
are the incident electric and magnetic fields (E and B), not the
current and voltage sources. Thus, it is necessary to modify the past

analysis to permit distributed field excitation of the transmission lines.

1. Baum, C.E., et al., "Numerical Results for Multiconductor Trans-
mission Line Networks," AFWL-TR-77-123, Air Force Weapons
Laboratory, Kirtland AFB, NM, November 1977.

2. Baum, C.E., T.K. Liu and F.M. Tesche, "On the General Analysis
of Multiconductor Transmission Line Networks," AFWL EMP
Interaction Note, to be published.

3. tegrhp. F.M., and T.K. Liu, "User Manual and Code Description for
Qv A General Multiconductor Transmission Line Analysis Code,"
grp ul:g;gr Air Force Weapons Laboratory, Contract F29601-78-C-0002,
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Field excitation of simple ¢ en two-wire lines has been
considered by a number of authors and two sepa: ste, but equivalent,
approaches used. Taylor, Satterwhite and Harr: son (ref. 4) and
Smith (ref. 5) derive a coupling mode' based on the incident tangen-
tial electric fields on both wires of the tr. smission line and on
the short wires of the loads at the ends of the ine. This approach
is based on the integral form of Ma:vell's equations as applied to
the closed loop formed by the two parallel wires of the transmission
line and the two loads at the ends. In this formulation, there
appear distributed voltage sources in both wires of the transmission
1ine, as well as voltage sources at both loads terminating the line.

A different approach has been used by Lee (ref. 6) to determine
the distributed field excitation. This is based on the differential
forms of Maxwell's equations and yields distributed current and
voltage sources along the line, with the voltage source being propor-
tional to the H field and the current source being related to the [ field.

Both of these formulations yield identical results for computing
the TEN currents flowing on a two-wire line excited by an incident
field. The former approach has been extended to the case of multi-
conductor transmission lines by Paul (ref. 7) and Frankel (ref. 8),
and 1s similar to that discussed in this report. A < igatly different %

4. Taylor, C.D., R.S. Satterwr‘te and C.W. Harrison, Jr., "The Response
of a8 Terminated Two-Wire Tr smission Line Excited by a Nonuniform
Electromagnetic Fileld," >FWL EMP Interaction Notes, Note 66,
November 1965, also, LEEE Trans. ~.P., Vol. AP-73, pp. 987-989, 1965.

5. Smith, A.A., Coy Hn of External Electron netic Fields to
Transmission Uine ﬂohn Wiley and Sons, New York,

6. Lee, K.S.H., "Balanced Transmission Lines in External Fields." AFNL
EMP_Interaction Notes, Note 115, July 1972,

7. Paul, C.R., "Frequency Response of Multiconductor Transmission Lines
llh-inated by an Electric Field,” IEEE Trans. EMC, Vol. EMC-18,
No. 4, pp. 183-186, November 1976.

8. :‘nnkel. S., Multiconductor Transmission Line Analysis, Artech House,
977.
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approach has been employed by Kajfez and Wilton in ref. (9), where the
concepts of reciprocity have been used to obtain the multiconductor
transmission-line response to a small aperture excitation of the line.
The method of refs. (4) and (5) has been applied to multiconductor
systems by Strawe (ref. 10), but his report is not ..cely distributed.
The present report discusses in detail the ¢..itation of
multicenductor transmission lines by an incident electromagnetic
field using the differential formulation. Section 1] presents the
derivation of the equations describing the termina', or load, current
responses of a multiconductor transmission line. These equations have,
as sources, both distributed voltage and current generators which are
induced by incident magnetic and electric fields. Section 111 first
discusses the derivation of these local sour .es in terms of the local
fields and transmission-line geometry. The corcept of an "equivalent
separation” between conductors, as commo~ly used for two-wire lines, is
then developed for an arbitrary multiconductor transmission line.
Finally, in Section IV, the inci~ent field components which contribute
to the distributed sources are given for an incident plane wave striking
the line at an arbitrary anqle ~f incidence.

9. Kajfez, D., and D.R. Wilton, "Small Aperture on a Multiconductor
Transmission Line Filled with Inhomogeneous Dielectrics,” AFOSR-
76-3025-2, Air Force Office of Scientific Research, November 1977.

10. Strawe, D.F., "Analysis of Uniform Multiwire Transmission Lines,"
Boeing Report D2-26088-) under Contract F04701-72-C-0210,
November 1972.
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SECTION Il
MULTICOMOUCTOR TRANSMISSION-LINE RESPONSE TO DISTRIBUTED SOURCES

As discussed in ref. (1), the response of a general transmission-
line network may be calculated by decomposing the currents on each
tube of the transmisison line into forward and reverse propagating
components. At every junction within the network, a scattering
matrix can be derived to express all scattered components of current
in terms of the incident components. These two sets of relations can
be combined to form a large matrix equation for the incident currents.
This equation, called the BLT equation, can be inverted numerically
and the incident currents determined. Through the scattering matrices,
the scattered and, thus, the total currents on the lines, can be
determined.

A basic element of the above network analycis is the determina-
tion of the propagation properties of the forward and backward waves
on the line, as well as their relative excitation by sources along the
line. For the purpose of this section, therefore, we will consider
only a single section (tube) of multiconductor transmission line.

Consider a lossless section ot multiconductor transmission line
having no sources, as shown in Figure 1. The length of the line is
denoted by ¢ and it contains N wires with the N+1°' wire being
the reference conductor. The N+1 wires are required to be parallel,

but not necessarily coplanar. for .ch a line, its electrical properties
are determined by a caoacitive coeff ~ient matrix, (Cé,m) , and an
inductive coefficient matrix, (Lé,m) . which depend only on line
geometry and dielectric properties around the line., For this line,
these matrices are nonsingular matrices of order N.

As discussed in ref. (1), the voltages and currents on this line
without sources must obey a coupled set of partial differential

equations as {




N /
Wire 2
Wire 3 Wire -

Figure 1.

Conductor N+)
(reference)

Section of multiconductor transmission line.
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5 [ (Vp(208)) (0. m) (Ly ) (v, (2,5))
= = -5 (1)

az ; ;
(1,(z,s)) (Chm (Of ) (1, (z.:s))

where the notation (V) represents an N-vector for the line voltage
and a similar notation holds for the current. The parameter < s
the complex frequency variable, and the tilde represents a Laplace
transformed quantity.

Equation (1) can be manipulated into two separate equations
for voltage and current vectors. The current equation becomes

2 -~

(1, (2,5))

2 ' ' =
- (G ) () (28 = (@) (2)

which is a one-dimensional wave equation for the N-vector current.
For a lossless multiconductor section inmersed in a uniform,

homogeneous dielectric, the matrix product (C;:m)(L;.m) in

Equation (2) is diagonal and the individual elements of the current

N-vector are themselves a solution to a simple wave equation:

kzln(z.s) 2
T ;*2 I (z,8) =0

where v s the velocity of wave propagation on the line.

A more general line, however, does not have a diagonal result for
the (C;'.)(L;.m) matrix, although it is possible to diagonalize it
through the use of a nonsingular NxN transformation matrix, denoted

by (Ty n)

, which consists of the current eigenmodes, (@n)‘ . as
columns. The ¢,'s are solutions to the eigenvalue equation

s"’(c;,.,)u;,.,,,)wn)1 - 3 (o) (3)

10




where if is the

(o,), .
By introducing a change of variables as

th eigenvalue corresponding to the eigenmode

(1,(2,s)) = (T, DU (2.5)) (4)

where (1“(z.s)) represents the modal currents, the wave equation
for the modal currents becomes

A (2s)) o,
—'—’a‘z'z_ *s (Tn.m) (cn.m)(Ln.m)(Tn.n)”n) . (y"..) (1n\ (5)
where (7“.“)2 is a diagonal matri. containing the ?f terms as
elements.
Since the matrix (v _, ~ :4uation (5) is diagonalized,

r,m
the solution for the modal currents can be expressed directly as

exponential functions of position, and the total solution for the
1ine currents becomes

e,

i - (5 (Vw2
(1 (2.s)) = (T ) (e AT ) ee M (a,,>) (6)

where (i;) and (a;) are N-vectors which define the amplitudes of
each of the propagating modes on the line and which depend on the line
termination and excitation. The terms e.(‘;"-")z are diagonal
matrices having as elements e 7, where 3, = ¢ ?f .

A similar development for the line voltage (V (z,5)) cen be

carried out to determine voltage modes and a propagation equation similar to
Equation (6). By defining a characteristic impedance matrix as

-1 -1 - -1
s (C ) (T ) W
Cn,n) n,m ( AN AR

) (7)




the line voltage N-vector can be expressea using the sam: constants
(5;) and (&;) as in Equation (6):

. -(v, )z (v, JJz
(Vplzs)) = (2 (T, ) (e "R (ag) - e MT (a,,)) (8)

The unknown constants (&;) and (&;) are determined by
taking into account the loads at each end of the line, as well as
the excitation. Consider the line shown in Figure 2, which has
lumped voltage and current sources at 2 = z. , as well as load impe-
dances (Z]n l“) and (Zznr) at z2=0 and z = L respectively.
On the section of the 1ind 0 5 z © z, Equations (6) and (8)
are valid, since this sect ,n of the line is source free. Similarly,
for z, Sz <t similar Juations are valid, but with different
constants, (c‘xn) . By relating ‘Vn\z.s)) to (ln(z.s)) at
z2=0,and 2= 1 through the load impedance matrices and by
relating the discontinuities of (Vn(z.s)) and (in(z.s)) to the
voltage and current sources at 1z - I, .8 set of linear equations
can be developed with the (in) constants for -1 section of line as
unknowns .

Of special interest are the load currents, i.e , (in(o.s))
and (!n(t.s)) . Using the solutions for the (dn) as well as
Equation (6) for 2 =0 and 2z = i , the load currents may be

expressed as:

(ploush || (8, ) ¢ () ) (0 )
(1 (L,s)) (0 ) (8 m) * ”2....)

i (5. o) T,

-(Fy ) LR ALY I
n,m * .
(T ) O "'“(r ! (F, ) AT ) ?
@ ’ . -
\ nm n,m 20.m n'd ]




wr

A 4
Y
4

reference conductor
2=0 2182 2=t

Figure 2. Single length of myiticonductor transmission

Tine with loads and Jumpea sources at 2 = z, -
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where the terms (f ;(zs.s)) and (,‘;(zs.s)) represent the source
terms for the positive and negative traveling waves on the multi-
conductor line. Those are referred to as combined current sources,
since they have the dimension of current but arise from both the
applied voltage and current sources at 2z = 2, . In this equation,
the terwms (r, ) and (I‘z ) are generalized current reflection
coefficient utrices given by

. - -1 1.
(r ) = [(Z ) + (2 )] '[(Z - (2 )] (10)
Tn.m Tn.m Com ]n.n) Coum

for the load at z = 0 , and similarly for (I‘Z ) at z =1t
with (22 a) 85 the load impedance. As deﬁned previously,
(ch." is the characteristic impedance matrix of the line.
Motice that the matrix equation in Equation (9) has, as its
elements, matrices. Thus, it {s referred to as a super matrix equation.
The double dot operator (:) is used to signify the product between.
two super matrices by first treating the super matrices as if they
were regular matrices and then performing matrix multiplications for
each of the individual multiplications of the super matrix product.
The form of the source terms in Equation (9) can be shown to be

. (v, o)z
= - 1 . ] -1 \( )
(3 () = F (T, e ™" 5T ) '(‘ch,m)'(v"s (2505)
s (r,‘,"(zs.s))) (1)

and

- (v, J)(e-z_) . -
(Fals)) = 3 (T, ee ™™ ST ) ‘-((zc MNTILIPR)

[ . n,m

- H,‘,”(zs.s))) (12) 4,

With these source terms, the terminal response of the transmission
line can be deterwmined for lumped voltage and current sources at
12, . For field excitation of the transmission line, it is

4




necessary to consider distributed excitation, as opposed to the
discrete excitation discussed above. This can be regarded as a
simple extension of Equations (11) and (12) by integrating over
the source terms (Vi’)) and (fﬁs)). Doing this, the combined
current sources become

n,m

L -
- (v, )¢ .
(¢o(s)) = %-‘['(}rn.,)-e AT o ey
0
e (1 es ) e (13)

-4 1 f (;n ) (t-€) -1 -1, ,5.(s)
MO N ;f((Tn..)'e ' -(Tm.) '((ZC ) '(V," (€.5))
0

- (i (z.s))) ¢ (14)

which follows directly from superposition. Notice that now the voltage
and current sources are per-unit-length quantities, and hence denoted
by a prime. These quantities must be determined given a knowledge of
the incident electromagnetic fieid on the line, as well as a knowledge
of the transmission line crosc-sectional geometry. This is discussed
in the next section of this report.

15
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SECTION 111
OETERMINATION OF DISTRIBUTED VOLTAGE AND CURRENT SOURCES

As indicated in the previous section, the terminal (or load)
currents of a multiconductor transmission line can be evaluated using
Equations (9), (13) and (14) if the distributed voltage and current
sources (9;‘(5)(1.5)) and (!;‘(s)(z.s)) are known everywhere along
the line. In some instances, such as a small aperture or other
localized source close to the transmission line, it is possible to
approximate the solution using a discrete source position, as in
ref. (9). For an arbitrarily incident plane wave, however, this fis
not possible. Sources distributed over the entire line are necessary.

Consider the case of a single multiconductor cable in free space
and with {mpedance terminations at each end, as shown in Figure 3.
Assume that in this bundle there are n+1 wires, with the n+1St
wire being the reference conductor. The electric and magnetic fields
in the vicinity of the 1ine can be divided into two parts. These

are the incident components, E'™C and #'"C and the scattered
: =5

components e and H™ , such that
t.flnc, g (15a)
Woewinc w8 (15b)

The scattered field components are caysed entirely by the induced
currents and charges on the n+l wires, as well as by the currents on
the terminations. The scattered fields from the line can be further
subdivided into three different classes. There are TEM, TE and ™M
transmission 1ine modes, which are produced by "transmission line"
currents, having the property that the components of the tota! current
k on each of the conductors sum to zero.

In addftfon to these currents, there are "antenna mode" currents.
These are currents which flow on each wire (but with a different magnitude

16
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Impedance Load

"

3
-1
e
w
»>|
i
a

Impedance Load

Figure 3. Isolated multiconductor 1ine excited by
incident plane wave.
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for each wire, in general) and are subject to the constraint that the
voltage difference between any two conductors in a transverse plane
is zero. Furthermore, these currents go to zero at the ends of the
line.

Finally, there can exist quasi-static current and charge distri-
butions which contribute to the scattereu field but have a net current
or charge of zero on each conductor. Although these latter currents
and charges do not play a role in computing the transmission-line
response directly, they are important in determining the coupling of
electromagnetic fields to the transmission line.

A complete and rigorous solution for the field induced currents
on the multiconductor line in Figure 3 can be obtained by formulating
and solving a set of coupled integral equations for the wire and load
currents, given a particular incident field. In many cases, however,
such a complete solution for t+ current is not needed. For lines
which are long compared wi': the wire separation, the currents due to
TE and TM fields attenuate rapidly from the loads or other line
terminations, giving rise. there‘ire, to a current distribution which
corresponds primarily to the TEM cyi “ents plus the other scattering
currents mentioned above. Moreover, in many cases, only the transmission-
Tine current response {s desired since the antenna mode currents do
not contribute to the load response in the general case, and if the
transmission line is next to a reference ground plane, the antenna
mode currents are not excited at all. Under the assumption that the
TE and TM currents are negligible and neglecting the effects of load
currents, the total E and H fi.lds 1n the vicinity of the transmission
Tine can be written as

E - E'NC,pnt, 1N, gt (16a)
and

-

Ao« ninc, gont , GTEM st (16b)




where the subscript (inc) refers to the incident {or free space)
fields, (ant) denotes the fields produced by the antenna mode currents,
(TEM) stands for the fields due to the transmission-line currents,
and (st) is for the portion of the fields caused by the static
distribution of current and charge on the wires, determined with the
condition that the total current and charge be zero on each wire,
Following the approach used in ref. (11) for single-wire lines
and in ref. (7) for multiconductor lines, Maxwell's equations can
be used to derive & v-i relation for the transmission line currents.
Consider a uniform section of multiconductor line shown in Figure 4.
fFor a time dependence of est ., Maxwell's equation may be written as

fo- ~s ﬁ (17)

and on a path c‘ , from the reference conductor to wire | (where
df‘ represents an element of the path, and A, is the normal to the
path), we can integrate Equation (17) to yield the following:

b
d = =
- ]; fedt = s , B+ at (18)

This result is standard, an¢ :ts derivation will not be repeated here.

Noting that the line integral of the electric fielid in Equation
(18) is the negative of the voltage between the two conductors, this
equation may be written as

= b
d - ~
Tzl = ju j: 8.4 dt + ju 5%t de

- d B B ar (19)

11. Lee, K.S.H., "Two Parallel Terminated Conductors in External Fields,"
IEEE Trans. EMC, Vol. EMC-20, No. 2, pp. 288-296, May 1978. (A
revision of ref. 6.)

19
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reference
conductor \ Axdixz
x
Figure 4. Cross section of multiconductor line showing

integration path C‘ from point a to b .
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As discussed by Paul in ref. (7). the term involving the BT field,
which arises from all TEM currents on the multiconductor line and i{s

a magnetic flux per unit length, can be computed in terms of the
inductance coefficient matrix elements as

b
=TEM . - < -
8 ‘ﬂ dl = o‘ b L“ l‘ + L12 12 ¢ ... L‘ I (20)

1 n 'n

where i]...in represent the currents on the n (non-reference)
conductors.

From our definition of the "antenna mode" currents, the voltage
between wire 1 and the reference is zero for these currents, which
implies that the antenna current flux term is also zero. See ref. (12).
Thus, we have the relation

b
j; #"tade 0 (21)

With these substitutions, Equation (19) can be written as

b
dv - .

.._.‘ 2 - N1 ¥ ] 1ﬂC ‘$t .

a1 Jw (L”I‘ + lerz + ... L‘nin) + sj: (B + B*")A de (22)

This procedure may be repeated for each of the n wires in the bundle,
and the resulting equations expressed in matrix form are

12. Frankel, S., "Evaluation of Certain Transmission-Line Forcing
Functions,” AFWL-TR-78-171, Afr Force Weapons Laboratory, Kirtland
Air Force Base, NM, (%0 be published).
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v b
d(v ) no-,

— s (i) e s| g @ $t)en at, (23)

The last term in this equation has dimensions of (volts/unit length)
and 1s essentially a distributed voltage source for the transmission
line. Denoting this by (i;‘“)) , we then have

b
- n - -
(vr"(‘)) - s, 1; (RINC + ﬁ‘“)-nn de_ (28)

where the relation ﬁ = uoﬁ has been used. The differentia' equation
for voltage and current in Equation (23) then becomes
datv )

¢ sluy (1) = ) (25)

A similar manipulation can be performed using the other
Maxwell equation

ol = se £ (26)

to obtain the second telegrapher's equation containing sources. Applying
this to the contour Cy fn exactly the same manner as in ref. (1),
the following relation may be derived.

d . — —
-ar §y Pendres o f Eedi (27)
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By inserting Equation (16a) into this last equation and noting that
the antenna mode contributions vanish, since by definition of the
antenna currents, !E‘"t-di =0 and !R""t-ﬂ dt = 0 , this
equation can be written as

b
. a‘dz' j: AN+ St s ™A de e s e f-d7 (28)

a a

or, as done by Lee (ref. 11), expressed as

b
.4 M Aade=sed Eedi-se EMMCLES)edl (29)
dz 1 1
a a
b

Using Equation (20) and recognizing that f] E-dt 1s the voltage

Yy Eqaution (29) becomes a

for the first wire. This process can be repeated for each wire, and
the following matrix equation can be developed for the transmission
1ine currents (ln) and voltages (Vn) :

d(l ) . ® . -
e s ey s f) @) o

Rearranging terms slightly yields the second telegrapher's
equation
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d(t )
=0 esien e = (1,8 (32)

where the source term (i;(s)) is given by

n i .
(]'-1(5)) - -s(C ) ﬁ (€' . Es)-d?n (33)

Note that in deriving this relation, the assumption that

(L) (€ ) = g (34)
has been employed, a result which implies that the lines are within
a uniform, homogeneous dielectric medium.

In an inhomogeneous dielectric region, say for the case of
each conductor having a separate dielectric jacket, it is known that
true TEM modes cannot exist. However, an approximate analysis can be
carried out by assuming that Equat o ns (25) and {32) are applicable.
The validity of this "quasi-TEM" assumption lies in the reasonable
comparison of theoretical and experimental results for the multi-
conductor system (ref. 13).

It is to be noted that the basic telegrapher's equations derived
here for the transmission line currents and voltages are different in
form than those developed by Paul (ref. 7). This is due to the fact
that Paul has integrated from the center of one conductor to the other
center, not from one surface to another of the thin, widely spaced
conductors which he considers. For the more general case of fat,
closely spaced wires, the total static electric and magnetic field in

13. Chang, S.K., F.M. Tesche, D.V. Girti and T.K. Liu, "Transtient
Analysis of Multiconductor Transmission-Line Networks: A Comparison
of Experimental and Numerical Results," AFWL-TR-78-152, Air Force
Weapons Laboratory, Kirtland AFB, NM, February 1979.
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any transverse plane must be used to compute the equivalent line
sources.

Aside from a difference in the definition of the unit normal
vector n , the major difference between the formulation of Lee in
ref. (11) and the present analysis is the existence of an additional
antenna mode source term in Lee's two-wire analysis. This two-wire
analysis could be extended to a multiwire case, and thus would imply
the existence of similar source terms in the present multiconductor
analysis. As discussed by frankel {ref. 12), the apparent discrepancy
arises out of different choices for the "antenna cu. -ent" by Lee, which
thus has an effect on the remaining transmission-line current.

As stated earlier, our choice of the “antenna current” f{s
that current flowing in each wire which produces a voltage difference
of zero between any conductor and another at any transverse plane in
the line. This choice is also used by Uchida (ref. 14), and thus leads
to a decoupling of the transmissior line currents from the antenna
mode currents.

Although explicit expressions for the voltage and current sources
have been developed in Equations (24) and (33), it still remains

necessary to evaluate the scattered static fields Es and ﬁs .

before the source terms :an be used in tquations (13) and (14) to
determine the load response of the multiconductor line. To determine
these source terms, 1t is necessary to solve two static boundary value
problems. To determine the current source in Equation (33), 1t ts
necessary to solve the two-dimensional static problem 1llustrated in
ligure 5. An incident (free space) electric field strikes a collection
of conductors, on which the net charges are zero. A static scattered
field is produced by the local charges induced on each wire, and the

14. Uchida, H., Fundamentals of Coupled Lines and Multiwire Antennas,
Sasakt Publishing, Ltd., Sendal, Japan, 1987.




Reference conductor

Figure 5. Cross section o multiconductor cable in
incident E field showing typical field
distribution and integration path from a
to b . Etach conductor has zero net charge.
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integrals in Equation (33) are then evaluated along any contour from
point a to b , using the total scattered field, ['"C + {S .

The solution to this problem for the multiconductor case is
similar to the two-wire problem discussed by Lee, but extended to
more wires. It is solved by looking for the solution to

w2 « 0 (34)

exterior to the wires, with the condition that ¢ = constant on
each of the conductors subject to the constraint that

9y
-a';‘—i-dsi =0 (35)

on each conductor, 1 , and that at infinity, the potential is

w(,inc . -;.'E“‘HC (36)

Here @‘"C represents the incident or free-space potential field in i

the absence of the transmission line. Once this equation is solved
(usually by numerical means) the potentials of each wire, ¢y » can be
determined, and the integrals of Equation (33) can be determined directly

b
i ~
j: (£ fs)-di‘ = -(8y - 9 4) (37)

It is possible, however, to express the integral in Equation (37)
in a simpler form, using only the incident field, E‘"c , and a vector
equivalent distance, Hi , in a manner similar to that of ref. (11).
Consider an auxilliary problem which has a potential field given by ¢*

and ts defined by the relations

2

Ve =0 (38)

*
with °J = constant (but unknown) on each of the i conductors of
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the multiconductor bundle, and with

)
~ddgs, =0 (39)
an J

for all conductors except for the !"‘ conductor and the reference

conductor, where we have the constraint

30, o
f N Bl (40)
wire §
and
3¢ (e
ntl 1
— dS . — (4))
] 3“'\*1 n+) €
reference

The solution to this auxtliary problem can be used to find the
field excitation of the transmission line by using Green's identity,

o* Py - o0 = 0 (42)

and applying Gauss' theorem to give the expression

. * . a¢* .
f(o %-@%—)dSof (¢ —}n’#-ogﬂ—)ds 0
all conductors S (43)

where S_ is a closed surface at infinity. Using the facts that
¢ and ¢* are constant on the conductors, that

*
—d g¢ «
fanj ds =0 (a4)
for all conductors except the 1"‘ and the reference conductor, and
that
F YA A WATI inc 30* Vye . . 1 inc
f(o'm o &) as (o Em)ds ! ]o o ds
s wires wires (45)
28

B k.



where

Y

08 3_'.‘1 (46)

is the charge density on each conductor for the auxiliary problem and is
a known quantity. Equation (43) can then be expressed as

1 ..V inc Y inc
:(@i'Qnﬂ) [0‘ ds1 -F f@ U‘?dsl'(fo 02d52-...

i 51 S2
(47)
Using Equation (40) and the relation oi"c = -E-r , this last
equation takes the form
. _finc =
(éi - oﬂ*l) 'E h‘ (‘8)
where the vector Hi is defined as
] ro‘ dS1 ¢[ r 05 dS2 + ... f r o:‘” dsn#l
_ ) S
hy ] 2 n+1 (49)
}' "7 954
5

With this expression, Equation (37) can be conveniently expressed as

b
i
‘{, (' + E%)eat, = £, (50)

d

and the N vector equivalent current source becomes
"(S) - . 1nC.»
(3,80 = -stey +((E'"0),) (51)

The vectors ﬁ} are referred to as the "field coupling vectors"
for the line, and also as the "effective height” of the conductors.
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Physically, they correspond to the vector distance between the charge
centroids on the multiconductor system, given a total charge Q on the
ith conductor, -Q on the reference conductor and zero net charge

on all others. Figure 6 1llustrates these relationships.

for the case of thin, widely separated wires, the vectors
51 are simply the distances from the center of the reference con-
ductor to each of the wires' centers. For more closely spaced wires,
the field coupling parameters must be calculated, using the integral
equation approach outlined by Giri in ref. (15).

A similar procedure can be carried out for determining the
distributed voltage source in fquation (24) by solving a magnetostatic
problem. The details of this are identical to that described by Lee
(ref. 11), modified by the presence of more than just two conductors.
The results are that the same field coupling parameters, E} , that
are used for the electric field calculations may be used for the
magnetic fields. This results in the following equation for the
distributed voltage source.

AN (TR (52)

The preceding discussion has been for the field excitation of
an isolated multiconductor line, in which one of the conductors in
the bundle serves as the reference. An often encountered situation,
however, is not this configuration, but one with an n-wire bundle
next to a flat, conducting ground plane. Ffor this case, the ground
plane serves as the reference conductor, and the antenna mode currents
ar¢ not excited.

15. Girt, D.V., F.M. Tesche, and S.K. Chang, "A Note on Transverse
Distributions of Surface Charge Densities on Multiconductor
Transmission Lines,” AFWL Interaction Notes, Note 337, April 1, 1978.
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ith conductor

Q1 =Q

center of postive charge

center of negative charge

reference conductor (n+l)
Q’,]'-Q

n

Figure 6. Cross section of isolated n+l wire
mu1ticonductor ”gﬁ~ showing field coupling
vector for the | conductor.
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For this case, the field coupling parameters are still
calculated as above. For example, as shown in Figure 7, the
coupling parameter Fi is calculated by placing a charge Q on
wire 1 and no net charge on the other wires. By image theory,
there is an image charge of -Q on the image of wire 1 and the
resulting charge centroids may be computed. The coupling parameter

vector is directed away from the ground plane and has a magnitude equal
to the shortest distance from the ground plane to the 1th wire's

charge center.

In this case, note that the incident fields E'"C and H'"C

which are used in Equations (51) and (52) must include the reflection
effects of the ground plane. Thus, if E'"C and H'™ represent
the free space fields in the absence of the ground plane, the
exciting fields of the line to be used in the above equations are

£, = 2(€1"-4) (53)
and u
Hy = 2(kxf)-A1" (54)

where f {s a unit normal to the plane, &k is the direction of
propagation of the incident wave and the subscripts n and t
represent field components normal to and parallel to the ground
plane, respectively.
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Figure 7. Field coupling vector for Wire 1 of multiconductor
line over a ground plane.




SECTION 1V
EXCITATION FIELDS DUE TO INCIDENT PLANE MWAVE

The expressions for the distributed current and voltage sources
in Equations (51) and (52) in the previous section are quite general
and depend only on the local incident electric and magnetic fields
on the line. One type of incident field which is useful to consider
is a plane wave of arbitrary angle of incidence.

Consider a single transmission-iine tube being illuminated by
a plane electromagnetic field. As shown in Figure 8a, the tube is in
the 2 direction and the k vector of the incident field arrives with
angles Y with respect to the z axis and eo , which {s the incli-
nation angle of the incident field. Two different polarizations of
the incident field are possible, and are denoted as TE and TM,
respectively. The TE case occurs when the incident E field is
perpendicular to the plane of incidence, which is defined as the
plane formed by the k vector and its two-dimensional projection in
the x-y plane. The TM case, conversely, occurs when the €
field lies within the plane of incidence. Figure 8b 1)lustrates
these different polarizations.

For both of these polarizations, the field components at the
multiconductor tube can be expressed as follows:

TE Fields
fnc . inc inc . _ginc
"z -H sin *o Ez E sin eo cos 'o
inc _ .inc fnc _ .inc
Hx H cos *o Ex - sin eo sin *o
inc _ inc _ cinc
Hy 0 Ey E cos eo
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Multiconductor

Tube Incident propagation direction

4
e
4

~
rd

(a)
y
Plane of H
Incidence y.
Y A (TM Polarization)
— (4
ﬂ&vﬂ,’ P
v .- E
P o H (TE Polarization)
\ : X
\ '
\WO—)\ :
A ]
2 v
AN
N
(b)

Figure 8. Geometry and polarization of the
incident plane wave.
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TE Fields

! inc . _,inc : inc _
i Hz -H sin 80 cos wo Ez Eo sin wo
inc inc inc _
Hx x .M sin 90 sin Vg Ex = -Eo cos wo
. inc inc inc
4 = =
Hy H cos 00 Ey 0

As seen from Equations (51) and (52), the important quantities
for determining the distributed sources are the electric field
component parallel to the vectors Ei , and the magnetic field
component perpendicular to h1 . Consider the geometry shown in
Figure 9. The 1‘" conductor is shown with its coupling vector having
an angle 61 with respect to the chosen x axis, and a magnitude
h‘ . For this case, the components of the electric field in the
direction parallel to h; are given by the following expressions

for the 1th conductor:
. glinc
E“1 Ey sin n‘ + Ex cos 0‘
« ginc
E (sin 91 cos eo - co$ 91 sin ﬂo sin wo)
(TE polarization) (53a)
inc
= -f cos A, cos v, (TM polarization) (53b)
and

H'i = -Hy cos 0‘ + Hx stn Qi
inc
= N sin 8, cos Yo (TE polarization) (S4a)

inc

= .4 (cos 8, cos 8y * sin 91 sin eo sin wo)

(TM polarization) (S54b)

With these field components, the distributed vector current
and voltage sources take the form
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i conductor
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Figure 9. Cross « nn of multiconductor line showing
field coupling parameter and pertinent
field components.
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AN es @ ) o€, ) (55)
and "
(1))« sy th ) (56)
n

and should be used in Equations (13) and (14) to evaluate the line
response for an incident plane wave,




SECTION V
CONCLUSIONS

This report has presented a discussion of the field excitation
of multiconductor transmission lines. First, a general expression
for the current response at the terminations of an N-wire multicon-
ductor cable has been developed in terms of distributed voltage
and current sources. In Section [l relationships between these
sources and the total static electric and magnetic fields in the
vicinity of the transmission 1ine are then derived. These are then
related to the free space (or incident) fields through a vector field
coupling parameter or equivalent separation of the lines. Finally,
Section IV expresses the distributed source terms for the multi-
conductor line in terms of the angles of incidence and polarization
of an incident plane wave.

This work expands upon the past studies of field excitation
of two-wire transmission lines. The field coupling parameters for a
multiconductor line are seen to be determined from a series of cal-
culations involving specifying a zero net charge on all conductors
except the reference and the conductor for which the coupling para-
meter is being determined. It is noted, furthermore, that the
excitation of the line depends strongly on the line's orientation
with respect to the incident fields.
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